syMrliesis or a bicyclic oxncyclonlxemidivirs sybtem RELATED TO MEOCNRETMOBTATIM CHROMOPHORE A

Adolf Krebs*, Thomas Wehlage and Claus-Peter Kramer
Institut für Organische Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg

Abstract

The synthesis of a stable bicyclic 12 -membered oxacycloalkenediyne $\underline{\underline{2}}$ related to the neocarzinostatin chromophore $A \underline{\underline{1}}$ is described.

Neocarzinostatin chromophore ${ }^{1}$ (NCS-Chrom) is a member of a novel class of powerful antitumor antibiotics with a highly unusual cycloalkenediyne structure. other examples are esperamicin, ${ }^{2 a}$ calicheamicin $2 b$ and dynemicin A. ${ }^{3}$ Responsible for the biological activity of NCS-Chrom is a unprecedented, highly strained epoxybicyclo[7.3.0]dodecadienediyne system. The structure of NCS-Chrom was elucidated by Edo and coworkers. ${ }^{4}$ The proposed mechanism for DNA damage involves activation of the chromophore by a thiol function. Generation of a very reactive biradical which abstracts a hydrogen from C-5' of the DNA backbone induces strand scission upon aerobic incubation. 5

Not only due to the extraordinary potency toward diseased cells but also because of the unexpected structure of this natural product, it has been a great challenge to find a useful synthetic approach to the bicyclic core of NCS-Chrom. The first synthesis of the parent bicyclic subunit of NCS-Chrom has been published by Wender et $a 1 .{ }^{6}$ and recently Hirama and co-workers have synthesized stable 10 -membered analogues. ${ }^{7}$ Our synthetic effort is concentrated on the synthesis of a functionalized core of NCS-Chrom and related model systems. Here we describe the synthesis of a stable bicyclic oxaalkenediyne system, starting from cyclopentenone $\underline{\underline{3}}$.

8: $R=$ SiMe $_{2}$ tBu, $X=O H$ 9: $R=-n-\quad, X=B r$
10: $R=H \quad . X=B r$

MEM $=\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}{ }^{-}$
a) $\mathrm{Br}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} \longrightarrow \mathrm{RT}$; b) $\mathrm{HCCCH}_{2} \mathrm{MgBr}, \mathrm{Et}_{2} \mathrm{O}, ~ \mathrm{RT}$; c) MEMCl ;

 i) 50^{\prime} taq NaOH, TEBA-ćl, Et ${ }_{2} \mathrm{O}$, RT, 50%.

Bromination and dehydrobromination of the commercially available cyclopentenone $\underline{\underline{3}}$ gave the bromocyclopentenone 8 which was exposed to propargylmagnesium bromide to give the acetylene 4. 6 Protection of the tertiary alcohol with methoxyethyloxymethyl chloride ${ }^{9}$ (MEMCl) provided 5 in 77\% yield. Transmetallation with lithium diisopropylamide (LDA) and condensation with paraformaldehyde afforded the alcohol $\underline{\underline{6}}$ in 75% yield followed by silylation with tert.butyldimethylsilyl chloride which was achieved in 96% yield. Palladium catalyzed coupling of the vinyl bromide 7 with 1-hydroxy-3-methyl-2 (Z)penten-4-yne gave the bisacetylenic alcohol 8 in excellent yield (92\%). Cocatalysis with CuI is essential for this reaction. ${ }^{10}$ Treatment of $\underline{\underline{8}}$ with dimethyl sulfide, N-bromosuccinimide in methylene chloride 11 afforded the bromide $\underline{\underline{9}}$ in 618 yield. Desilylation with tetrabutylammonium fluoride yielded the alcohol $\underline{\underline{10}}$ (54\%) as a potential precursor for the cyclisation. Slow addition of 10 to a vigorously stirred solution of aqueous NaOH (50\%), diethyl ether and benzyltriethylammonium chloride as phase transfer catalyst gave $\underline{\underline{2}}$ as a pale yellow oil in 50\% yield.

The cycloalkenediyne 2 is characterized by spectroscopic data. ${ }^{12}$ Most revealing was the detailed $1_{\mathrm{H}-\mathrm{NMR}}$ and H, H-COSY-NMR-spectrum. It is interesting that one of the allylic protons appears at 4.05 ppm and the other at 4.57 ppm . This high field shift is in accord with the structure of $\underline{\underline{2}}$ because one of the allylic protons is located in the anisotropic shielding cone of the two triple bonds.
Hitherto a novel route to the 9 -membered core of the NCS-Chrom via a [2,3] sigmatropic wittig-ring contraction has failed.
Further studies toward the synthesis of neocarzinostatin chromophore aglycone and model systems are in progress in our laboratories.

Acknowledgements - We thank the Fonds der Chemischen Industrie for support of our work.

References and notes

[^0]2b) Lee,M.D.; Dunne,T.S.; Siegel,M.M.; Chang,C.C.; Morton,G.O.; Borders, D.B.; J.Am.Chem.Soc. 1987, 109, 3464.
3) Konishi,M.; Ohkuma,H.; Matsumoto,K.; Tsuno,T.; Kamei,H.; Miyaki,T.; Oki,T.; Kawaguchi,H.; Van Duyne,G.D.; Clardy,J.; J.Antibiot. 1989, 42, 1449 .
4) Edo,K.; Mizugaki,M.; Koide,Y.; Seto,H.; Furihata,K.; Otake,N.; Ishida,N.; Tetrahedron Lett. 1985, 26, 331.
5a) Goldberg, I.H.; Free Radical Biol. Med. 19a7, 3, 41.
b) Kappen, L.S.; Goldberg,I.H.; Nucleic Acids Res. 1985, 13, 1637.
6) Wender,P.A.; Harmata,M.; Jeffrey,D.; Mukai,C.; Suffert,J.; Tetrahedron Lett. 1988, 29, 909.
7) Hirama,M.; Fujiwara,K.; Shigematu,K.; Fukazawa,y.; J.Am.Chem.Soc. 1989, 111, 4120.
8) Smith,III,A.B.; Branca, S.J.; Guaciaro,M.A.; Wovkulich, P.M.; Korn,A.; Org.Syn. 1983, 61, 65.
9) Corey, E.J.; Gras,J.L.; Ulrich,P.; Tetrahedron Lett. 1976, 809.

10a) Sonogashira,K.; Tohda,J.; Hagihara,N.; Tetrahedron Lett. 1975, 4467.
b) Ratovelomanana,V.; Linstrumelle,G.; Tetrahedron Lett. 1984, 25, 6001.
11) Corey, E.J.; Kim,C.U.; Takeda,M.; Tetrahedron Lett. 1972, 4339.
12) All compounds were characterized by $1_{H-N N R}{ }^{13}$ C-NMR, CI-MS, IR spectroscopy and elemental analysis.
2: ${ }^{1}{ }_{\mathrm{H}-\mathrm{NNPR}}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right)$:
$\delta=1.72-1.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.8\left(\mathrm{~d},{ }^{4} \mathrm{~J}=1.59 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.20-2.53$
$\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right), 2.42\left(\mathrm{dt}, \mathrm{J}_{\mathrm{AB}}=17.07 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{AX}}=\mathrm{J}_{\mathrm{BX}}=1.79 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{C} \equiv \mathrm{C}\right), 2.84$ $\left(d t, 2 H, J_{A B}=17.07 \mathrm{~Hz}, J_{A Z}=J_{B Z}=2.18 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{CEC}\right), 3.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.50\left(t, 2 H, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 3.60-3.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 4.01,4.11$ (mc, $J_{X Z}=15.88 \mathrm{~Hz}, J_{A X}=J_{B X}=1.79 \mathrm{~Hz}, J_{A Z}=J_{B Z}=2.18 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{2} \mathrm{O}$), 4.05 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CCHO}$) , 4.57 ($\mathrm{dd},{ }^{2} \mathrm{~J}=10.72 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8,54 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CCHO}$) , 4.84 $\left(\mathrm{AB}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.75\left(\mathrm{~m},{ }^{3} \mathrm{~J}=8.54 \mathrm{~Hz},{ }^{4} \mathrm{~J}=8.59 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3} \mathrm{CC}=\mathrm{CH}\right), 6.26$ ($t,{ }^{3} \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}$, olefin. H) ppm. 13 C-NMB $\left(\mathrm{CDCl}_{3}, 62.896 \mathrm{MHz}\right)$:
$\delta=22.59\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 30.05,30.79$ (each $1 \mathrm{C}, \mathrm{CH}_{2}$), $36.17\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right)$, $56.04\left(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{O}\right), 58.97\left(1 \mathrm{C}, 0 \mathrm{OCH}_{3}\right), 64.63\left(1 \mathrm{C}, \mathrm{C}=\mathrm{CCH}_{2} \mathrm{O}\right), 67.36,71.78$ (each $1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $78.54,84.24,89.06,89.79$, (each $1 \mathrm{C}, \mathrm{CEC}$), $91.45\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{O}\right), 91.50\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{q}}\right), 126.96(1 \mathrm{C}, \mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{C}), 127.89$ ($1 \mathrm{C}, \mathrm{HC}=C R_{2}$), 131.48 (1C, $\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{C}$) , 142.06 (1C, $H C=C R_{2}$) ppm.
(Received in Germany 2 April 1990)

[^0]: 1) Isolation: Ishida,N.; Miyazaki,K.; Kumagai,K.; Rikimaru,M.; J.Antibiot. 1965, 18, 68.

 2a) Golik,J.; Dubay,G.; Groenewold,G.; Kawaguchi,H.; Konishi,M.; Krishnan,B.; Ohkuma,H.; Saitoh,K.; Doyle,T.W.; J.Am.Chem.Soc. 1987, 109,3462.

