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Abstract: The synthesis of a stable bicyclic 12-membered oxacycloalkene- 
diyne 2 related to the neocarzinostatin chromophore A A is described. 

Neocarzinostatin chromophore ' (NCS-Chrom) is a member of a novel class of 

powerful antitumor antibiotics with a highly unusual cycloalkenediyne 
structure. Other examples are esperamicin,2a calicheamicin 2b and 

dynemicin A.3 Responsible for the biological activity of NCS-Chrom is a 

unprecedented, highly strained epoxybicyclo[7.3.O]dodecadienediyne system. 

The structure of NCS-Chrom was elucidated by Kdo and coworkers.4 The 

proposed mechanism for DNA damage involves activation of the chromophore 

by a thiol function. Generation of a very reactive biradical which 

abstracts a hydrogen from C-S0 of the DNA backbone induces strand scission 

upon aerobic incubati0n.S 
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Not only due to the extraordinary potency toward diseased cells but also 

because of the unexpected structure of this natural product, it has been a 

great challenge to find a useful synthetic approach to the bicyclic core of 

NCS-Chrom. The first synthesis of the parent bicyclic subunit of NCS-Chrom 

has been published by Wender et a1.6 and recently Iiirama and co-workers 

have synthesized stable lo-membered analogues.' Our synthetic effort is 

concentrated on the synthesis of a functionalized core of NCS-Chrom and 

related model systems. Here we describe the synthesis of a stable bicyclic 

ojtaalkenediyne system, starting from cyclopentenone 2. 

? 
f: R=H 

z:R =MEM 

f-h 

8: R = SiMe$Bu. X=OH 

$l:R: -II- ,X=Br 

lQ:R= H , X=Br 

$:R=H 

2 :R=SiMeztBu 

Mm = CH,OCH,CH,OCH,- 



3535 

Bromination and dehydrobromination of the commercially available 

cyclopentenone 1 gave the bromocyclopentenone 8 which was exposed to 

propargylmagnesium bromide to give the acetylene &.6 Protection of the 

tertiary alcohol with methoxyethyloxymethyl chloride g (MMCl) provided 2 in 

77% yield. Transmetallation With lithium diisopropylamide (IDA) and 

condensation with paraformaldehyde afforded the alcohol 4 in 75% yield 

followed by silylation with tert.butyldimethylsilyl chloride which was 

achieved in 96% yield. Palladium catalyzed coupling of the vinyl bromide 1 

with 1-hydroxy-3-methyl-2(Z)penten-4-yne gave the bisacetylenic alcohol 4 in 

excellent yield (92%). Cocatalysis with CuI is essential for 

this reaction.1° Treatment of p with dimethyl sulfide, N-bromosuccinimide in 

methylene chloride I1 afforded the bromide 2 in 61% yield. Desilylation 

with tetrabutylammonium fluoride yielded the alcohol 10 (54%) as a potential - 
precursor for the cyclisation. Slow addition of u to a vigorously stirred 

solution of aqueous NaOH (50%), diethyl ether and benzyltriethylammonium 

chloride as phase transfer catalyst gave 2 as a pale yellow oil in 50% 

yield. 

The cycloalkenediyne 2 is characterized by spectroscopic data.12 Most 

revealing was the detailed Qi-NMR- and H,H-COSY-NMR-spectrum. It is 

interesting that one of the allylic protons appears at 4.05 ppm and the 

other at 4.57 ppm. This high field shift is in accord with the structure of 

& because one of the allylic protons is located in the anisotropic shielding 

cone of the two triple bonds. 

Hitherto a novel route to the g-membered core of the NCS-Chrom via a [2,3] 

sigmatropic Wittig-ring contraction has failed. 

Further studies toward the synthesis of neocarzinostatin chromophore agly- 

cone and model systems are in progress in our laboratories. 
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2: 'H_NMR (CDCl,, 250 MHz): 

b= 1.72-1.82 (m,lH,CH2), 1.8 (d,4J=1.59 Hz,3H,CH3), 2.20-2.53 

(m,3H,CH2), 2.42 (dt,JAB= 17.07H2, JAxJBK= 1.79 Hz,lH,CH-Ccc), 2.84 

(dt,2H,JAB= 17.07 Hs,JAE=JBE' 2.18 Hz,lH,Cx-CzC), 3.32 (s,3H,0CH3), 

3.50 (t,2H,0CH2CI120CH3), 3.60-3.90 (m,2H,~2CH20CH3), 4.01, 4.11 

(mc,JKE=15.88 Hz,JAXJB~ 1.79 Hz,JAEPJBE" 2.18 Hz,~H,CZCCH~O), 

4.05 (m,lH,C=C~O), 4.57 (dd,2J- 10.72 H~,~J=8,54 Hz,lH,C=CCHO), 4.84 

(AB,2H,0CI120), 5.75 (m,3J= 8.54 Hz,4J==8.59 Hz,lH,H3CC=CH), 6.26 

(t,3J= 2.7 Hz,lH,olefin.H) ppm. 

13c_NMR (CDC13, 62.896 MHz): 

6 - 22.59 (1C,CH3), 30.05, 30.79 (each 1C,CH2), 36.17 (1C,g2C_=C), 

56.04 (1C,CzCm20), 58.97 (lC,OCH3), 64.63 (1C,C=Cm20), 67.36, 71.78 

(each 1C,oCH2CH20), 78.54, 84.24, 89.06, 89.79, (each lC, CaC), 

91.45 (1C,0CH20), 91.50 (lC,Cg), 126.96 (lC,C=C-Q=C), 127.89 

(1C,HC=cR2), 131.48,(1C,CKC-C-c), 142.06 (lC,H~=CR2) ppm. 

(RcccivcdiaGumany 2April1990) 


